Illustrating System Entity Structure For Building Simulation

Bernard Zeigler
RTSync Corp

ACIMS
C4I Center, GMU
April 2011
The code consists of five parts: the model parameters, which are normally supplied by the user; the initialization of a set of changing variables known as the state; a simulation loop; the state transition, which occurs repeatedly within the loop; and the simulation output, which in this case also occurs within the loop.
the basic structure of the program remains.
The thing to note is that the added code, shown in green, is scattered throughout the program.
Using DEVS, simulation software is divided into a model and a simulator.

Just like the traditional approach, DEVS-based simulation development is an iterative process. The difference is that, because a DEVS simulator can be reused for a variety of different models, the developer modifies only the model at each iteration.

Aside from enforcing a distinction between the model and the simulator, DEVS allows complex models to be composed of simpler component models.
A DEVS model generally deals with model parameters, the initial state, state transitions, and simulation output, but the simulation loop itself is part of the simulator.

DEVS models are either atomic or coupled, and coupled models include various interconnected component models.

Using DEVS, each enhancement requires modifications to only certain component models; this encourages collaboration.
DEVS-Based Modeling & Simulation

System

Structural Description

Behavior Descriptions

Combine structure and component behavior

System Entity Structure accepted by Building Simulation Community

Generate Model and Simulator

Models provided by the Building Simulation Community – preferable DEVS-compliant
Introducing the System Entity Structure (SES)

- The SES takes collaborative DEVS model development a major step further
- The SES enables the description of families of hierarchical models such as a range of architectures for building simulations
- The SES supports the development of model repositories where components developed by developers and vendors can be stored for reuse
- A building architect/designer can prune the SES for a particular architecture and by transforming, evaluate it for various objectives such as energy consumption
- DEVS/SOA goes an additional step to support discovery and model composition using resources of the web
SES Formal Framework

The System Entity Structure (represents a design space via the elements of a system and their relationships in hierarchical and axiomatic manner)

Aspect: labeled decomposition relation between the parent and the children

Specialization: labeled relation that expresses alternative substitutions for a component

Multi-aspects: aspect for which the components are all of the same kind.

Pruning: cuts off structure in a SES that is not needed to meet particular objectives

Selects from a family of possible architectures
Basic Infrastructure

Objective

Experimental Frames

SES

Pruning

Transformation

Model Base

Simulation Model

Experimental Frame Model
System Entity Structure for Building and Experimental Frame
NL Specification of System Entity Structure for Building and Experimental Frame

From the heatFlow perspective, BuildingNEFClimate is made of Building and EFClimate!
EFClimate can be OutdoorTempSeries or OutdoorTempGenr in meansOfGeneration!
From the heatFlow perspective, EFClimate sends OutdoorTemp to Building!

From the buildingHeatFlow perspective, Building is made of BuildingEnvelope, IndoorClimate, HVACSystemNSensor, and Occupant!
From the buildingHeatFlow perspective, Building sends OutdoorTemp to BuildingEnvelope!
From the buildingHeatFlow perspective, BuildingEnvelope sends OutdoorHeatTransfer to IndoorClimate!
From the buildingHeatFlow perspective, HVACSystemNSensor sends HVACHeatTransfer to IndoorClimate!
From the buildingHeatFlow perspective, IndoorClimate sends IndoorTemp to Occupant!
From the buildingHeatFlow perspective, IndoorClimate sends IndoorTemp to HVACSystemNSensor!
From the buildingHeatFlow perspective, Occupant sends WindowChange to BuildingEnvelope!

BuildingEnvelope can be WithWindow or WithoutWindow in opening!

From the control perspective, HVACSystemNSensor is made of HeatCoolSystem, Ventillator, and TempSensor!
From the control perspective, HVACSystemNSensor sends IndoorTemp to TempSensor!
From the control perspective, TempSensor sends SensorChange to HeatCoolSystem!
From the control perspective, HeatCoolSystem sends HVACHeatTransfer to HVACSystemNSensor!

HeatCoolSystem can be HeaterNCooler or HeatPump in operation!

From the onOff perspective, HeaterNCooler is made of Heater and Cooler!
From the onOff perspective, HeaterNCooler sends SensorChange to Heater!
From the onOff perspective, HeaterNCooler sends SensorChange to Cooler!
From the onOff perspective, Heater sends HVACHeatTransfer to HeaterNCooler!
From the onOff perspective, Cooler sends HVACHeatTransfer to HeaterNCooler!
Top 3 Levels of Building and EF SES

Coupling

BuildingNEFClimate

EFClimate

Climate-meansOfGenerationSpec

OutdoorTempSeries

Building

Occupant

IndoorClimate

Building-buildingHeatFlowDec

BuildingNEFClimate

heatFlowDec

Building

BuildingEnvelope

Occupant

inWindowChange

IndoorClimate

HVACSystemNSensor

outHVACHHeatTransfer

IndoorClimate

outIndoorTemp

Building

inOutdoorTemp

BuildingEnvelope

outOutdoorHeatTransfer

IndoorClimate

outIndoorTemp

HVACSystemNSensor

inIndoorTemp

Occupant

outWindowChange

BuildingEnvelope

inWindowChange

inHVACHHeatTransfer

Building

inHVACHHeatTransfer
SES Showing Specializations

Specialization for choice of HeatNCool System

Specialization for choice of outdoor weather source
Pruning Entities From Specializations

```plaintext
selectEntityFromSpec("HeaterNCooler", ".."..");
selectEntityFromSpec("HeatPump", "operation", "HeatCoolSystem");
```
Pruning of SES where Separate Heater and Cooler are Selected
Transformation of SES where Heat Pump Selected
Transformation of SES where Separate Heater and Cooler Selected
Refinement of Experimental Frame to include Energy Consumption Transducer

From the heatFlow perspective, BuildingNEFClimate is made of Building and EFEnergyConsumed!

From the heatFlow perspective, EFEnergyConsumed sends OutdoorTemp to Building!
From the heatFlow perspective, Building sends HVACHeatTransfer to EFEnergyConsumed!

From the energy perspective, EFEnergyConsumed is made of OutdoorWeather and EnergyTransd!
OutdoorWeather can be OutdoorTempSeries or OutdoorTempGenr in meansOfGeneration!
From the energy perspective, OutdoorWeather sends OutdoorTemp to EFEnergyConsumed!
From the energy perspective, EFEnergyConsumed sends HVACHeatTransfer to EnergyTransd!

//rest of SES is same as before
Pruned SES showing Refined EF for Consumption
DEVS/SOA combines DEVS with SOA

Simulation, Web Service, Geographic, Ontology Standards

External Web Service-Based Models:

DEVS Web Service Proxies: Model Integration

DEVS Compliant Models

Simulation Coordinator

Expanding Capabilities

DEVS/SOA is an open architecture with expanding capabilities to exploit simulation resources on the Web.
The Creative Generative World of Pruning

- Constraints may apply to aspects (compositions) and selections (specializations)

- Constraint propagation — a selection in one place may constrain the choices in another place — can be rule based

- Context dependence — selections from the same specialization can be different in different contexts (under different entities)

- MultiAspects open up new contexts for pruning
Books and Web Links

www.acims.arizona.edu

Rtsync.com

http://en.wikipedia.org/wiki/DEVS