CURRENT PRACTICES IN M&S

- Evolution in M&S: driven by technology (computing power, networks, graphical interfaces, standards).

- Current practices: **ad-hoc** techniques tailored to solve each particular problem.

- Tendency to **encapsulate** models, simulators and experiments into **tightly coupled** packages (written in programming languages such as Fortran, C, C++, Java).

- **Difficulties**: testing, maintainability of the applications, integration, software reuse.

- Relatively few examples of storing **previously** developed models to be adapted for interoperability and reuse.
Advantages of DEVS M&S methodology

- Research in the last 15-20 years showed that DEVS theory can is a good starting point to provide:
 - Interoperability and reuse
 - Engineering-based approach (different for varied types of M&S life cycles)
 - Facilities for automated tasks
 - High performance/distributed simulation
 - Hybrid systems definition
DEVS Toolkits

- ADEVS (University of Arizona)
- CD++ (Carleton University)
- DEVS-C++ (Kaist – Korea)
- DEVS/HLA (ACIMS)
- DEVSJAVA (ACIMS)
- DEVSim++ (Kaist - Korea)
- GALATEA (USB – Venezuela)
- GDEVS (Aix-Marseille III, France)
- JDEVS (Université de Corse - France)
- PyDEVS (McGill)
- PowerDEVS (University of Rosario, Argentina)
- SimBeams (University of Linz – Austria)
- New efforts in China, France, Portugal, Spain.
WHERE TO GO FROM NOW

- Bridging the gap between research and practice
 - DEVS ready to take the leap
 - Critical mass of knowledgeable people
 - Large number of tools/researchers
 - Ready to go from Research to Development

- Standardization of models (DEVS and non-DEVS)

- Building libraries/user-friendly environments

- Further research required; open areas.
Goals

- Study standard representation of DEVS to support common understanding, sharing and interoperability
- Analysis potential establishment of a core for a DEVS standard.
- Relationship to other standards
- Potential creation of a proposed standardized language
DEVS Standardization Activities
Focus groups

- Team 1: Building DEVS language+libraries
 => Improving learning curve

- Team 2: implementation of services to interoperate at least two existing DEVS tools

- Team 3: discussion of the contents of a DEVS kernel
CURRENT DEVELOPMENTS - TEAM 1

Building DEVS language+libraries

- Built versions of graphical-based tools with educational purposes
- Tools used for teaching DEVS concepts (ASU, UofA, Carleton University, McGill, Univ. Marseille, Blaise Pascal)
- Extending the experience to other members
CURRENT DEVELOPMENTS - TEAM 2

Interoperation of two or more existing DEVS tools

- ADEVS and DEVSJava (H. Sarjoughian)
- CD++ and DEVS/C# (G. Wainer)
- E-CD++ and PowerDEVS (G. Wainer)
 - http://youtube.com/arrlab
Introduce a new discipline/problem domain

Model, Simulate, Verify and Tune
Iterative Process

3° – Full Standalone and Collaborative M&S

e.g.: Experiment with new Control Theory-based controllers interacting with the pre-existent Pod Controller.
PowerDEVS for M&S of Continuous Systems

12

CD++
(HLE & Pod)

CD++
(Pod Ctrl.)

CD++
(Pod Ctrl.)

Network

Team A

Team B

Team C

3° – Full Standalone and Collaborative M&S

Coupled Models

Atomic Models

e.g.: Experiment with new Control Theory-based controllers interacting with the pre-existent Pod Controller.
CURRENT DEVELOPMENTS - TEAM 3

Discussion of the contents of a DEVS kernel

- Book chapter published (4)
DEVS SIMULATION PROTOCOL

Coordinator

simulators.tellAll("initialize")
simulators.AskAll("nextTN")
simulators.tellAll("computeInputOutput")
simulators.tellAll("sendMessages")
simulators.tellAll("ApplyDeltFunc")

DEVS Simulator

DEVS Model 1

DEVS Simulator

DEVS Model 2

Non-DEVS Simulator

Core Simulator Interface

Core Simulator Interface

Core Simulator Interface
CONCEPT OF DEVS STANDARD
Standardization at the right level

Objectives:
- Support interoperability at the modeling level
- Support model composability
- Technology independence
- Include all modeling paradigms in wide use
- Research collaboration academia, industry, gov

Legend

DTSS – Discrete Time System Specification
ODESS – Ordinary Differential Equation System Specification
PDESS – Partial Differential Equation System Specification
INTEROPERABILITY BETWEEN DEVS AND non-DEVS MODELS USING DEVS/SOA

DEVS Standard Interoperability approach
Interoperability between DEVS and non-DEVS models using DEVS/SOA

- Modeling Approach

- xDEVS Model Interface

- Matlab Functions

- Matlab Java Builder

- Function Wrapper non-DEVS (Java)

- DEVS Model (Java Based)

- non-DEVS Model (Java Based)

- MCR
Interoperability between DEVS and non-DEVS models using DEVS/SOA

- Simulation Approach

Server

DEVS/SOA Coordinator

SOAP

DEVS/SOA Simulator

xADEV Model

DEVS Model

MCR

Server

DEVS/SOA Simulator

xADEV Model

DEVS Model

non-DEVS Model
DEVS/SOA - PROBLEMS

- The state of Web Services is memorized by means of “static containers”
 - It does not work in .NET, for example
- All the servers receive the whole model (java files), where it is compiled
- Messages (events) are serialized in bytes

Interoperability is a difficult task
In addition to upload and compile models, we propose:

- Simulators as web services (done)
- Models as web services as well
 - Repositories of models

Message serialization: WSDL

- Structure of Messages are defined in WSDL → XML serialization can be done automatically
MODEL & SIMULATOR INTEROPERABILITY

DEVS Middleware (Standards compliant API)

DEVS Modeling Language (DEVS PIM DSL)
(Atomic and Coupled models)

Net-centric Infrastructure (SOA)

DEVS / SOA

Non-DEVS eg. MATLAB

192.168.1.101

DEVS / JAVA
192.168.1.100

DEVS / C++
192.168.1.101

M2M transformation

M2DEVS transformation

M2DEVSML transformation

End User client

Server-side architecture

5/2/2011
EXISTING APPROACHES (SOAP WS)

- Simulation Components
 - Communicate with RPC-style
 - RPC is converted to SOAP by WS underlying layer
EXISTING APPROACHES (SOAP WS)

- Heterogeneous interface
 - RPCs invented by programmers

- Making interoperability sensitive to changes

- RPCs: difficult to support multiple interoperability protocols.
 - A Port for each group of RPCs

- Difficult to develop Synchronization semantic standards.
 - Standardizing RPCs names and programming parameters

- Services composition does not scale well
RISE METHODOLOGIES

- Uses RESTful WS Structural Rules
 - Interoperate in the Web style
- Widely accepted standards: XML, URI, and HTTP.
- Hides implementations (heterogeneity) in resources (resource-oriented):
 - Resources addressed via URI templates.
 - Created by a unique URI instance
 - Resources: classes of services
 - Allow multiple services Support
 - Experiment Blueprint Framework
 - Experiment is made of a number of URIs
RISE Methodologies (Cont.)

- Exchanged Information structure (syntactic):
 - Simulation semantics expressed in XML messages

- Multiple-semantic support
 - A system can be implemented to support multiple XML messages
 - Allow systems to evolve independently

- Remote simulation messages aggregation
 - Improve distributed simulation performance
Representational State Transfer (REST)

- Web Style & Principles (reusing existing assets through the Web)
 - Message-oriented
 - Services: self-contained blocks
- Uniform Connectors
 - Resources: uniquely addressed (URI)

Uniform Connectors (Channels)

- XML, HTML, Text Msg: describe transferred data
- PUT (Create/Update)
- DELETE (Remove)
- POST (Append)
- GET (Read)

Client

Service Resource (URI)

Representation (Data/State)
REPRESENTATIONAL STATE TRANSFER (REST)

- Web Style & Principles (reusing existing assets through the Web)
 - Message-oriented
 - Services: self-contained blocks
- Uniform Connectors
- Resources: uniquely addressed (URI)

Uniform Connectors (Channels)
Resources

- **Group URL:** http://www.sce.carleton.ca/faculty/wainer/DEVSTD

- **Mailing list:**
 - SISO Reflector
 - http://www.sisostds.org/

- **Old posted messages:**
 - http://groups.yahoo.com/group/DEVSTD

Other resources:

- http://www.acims.arizona.edu/
- http://www.sce.carleton.ca/faculty/wainer/celldevs/

- **Coordination:** Gabriel A. Wainer. gwainer@sce.carleton.ca